
AR Navigation

Version 3.0.0


1



Contents


1. Introduction	 4 

1.1 Features	 4

1.2 Algorithms	 4

2. Requirements	 5 

2.1 Requirements for iOS	 5

2.2 Requirements for Android	 5

3. How it works	 6 

3.1 App Launch	 6

3.2 Predefined Locations	 7

3.3 Start	 8

3.4 Selecting a Destination	 9

3.5 Pathfinding	 10

3.6 Minimap	 11

3.7 Markers	 12

4. Setting up	 13 

5. World mapping API	 15 

ARWorldBase	 15

MapSegment	 15

Vertex	 17

FloatingIcon	 18

Room	 18

Configuration	 19

6. Supplementary API	 20 

2DImageProvider	 20


2



NavigationPathSpline	 20

Marker	 21

Arrow	 21

6.1 Structs	 21

6.2 Data Assets	 22

7. Demo	 23 

8. Debug	 24

3



1. Introduction 
AR Navigation allows creating apps that use AR to navigate within a given 
target area. It’s being developed in two variants: cross-platform (iOS/
Android) and native (at this time, iOS only). 


1.1 Features 

AR Navigation features: automatic calculation of the optimal route using 
two types of algorithms; dynamic 3D minimap that shows user current 
location and rotation; intuitive UI that shows user destination, remained 
distance, and has a list of quick buttons for predefined destinations; floating 
icons to highlight possible points of interest; custom markers that can snap 
to a detected surface; QRCode detection.


1.2 Algorithms 

AR Navigation uses two types of algorithms for pathfinding: 

 
1. Regular (Dijkstra algorithm) is the default algorithm used to find the 
optimal path between a starting vertex and a target vertex. The algorithm 
will “visit” all existing vertices on the given graph to find the shortest 
possible path. 


The regular algorithm should be used when your given target area is a 
graph (there are always multiple possible ways to reach a vertex) and/or it 
contains non-unique vertices (vertices with the same ID, for example, you 
want to allow users to search for a nearest exit, and there are multiple exits 
in the building).


4



2. Fast is the supplementary algorithm used to find the optimal path 
between a starting vertex and a target vertex. The algorithm will start 
“visiting” existing vertices on the given graph to find the shortest possible 
path, but instead of “visiting” every possible vertices, it will terminate 
immediately after a vertex with the given ID is found. 


The fast algorithm should be used only when your given target area is a 
tree (there is always no more than one possible way to reach a vertex) and 
the target area doesn’t contain any non-unique vertices. Using the fast 
algorithm on the graph target area and/or on the area with non-unique 
vertices may lead to unpredictable and non-optimal pathfinding. 


2. Requirements 

The scale of each map segment must match its real-world scale with the 
smallest possible error. Even very small mismatches in scale will lead to a 
big cascading increase in the error level depending on the distance 
traveled.


2.1 Requirements for iOS 

The device must support ARKit. Lowest possible deployment target is iOS 
12.0, but latest iOS 14.0 is strongly recommended. For more information on 
ARKit requirements refer to Apple’s official documentation.


2.2 Requirements for Android 

The device must support ARCore. For more information on ARCore 
supported devices and requirements refer to Google’s official 
documentation.


5

https://developer.apple.com/documentation/arkit/verifying_device_support_and_user_permission?language=objc
https://developers.google.com/ar/devices
https://developers.google.com/ar/devices


3. How it works 

3.1 App Launch 

When the user launches the app, they will be prompted to scan the QR 
code used to download the app. This is needed to immediately set their 
position in the virtual world. Using such QR code is the most convenient 
way to ensure the accuracy of the user position.  
 
Also, it’s possible to use any image which can fit on an A4 sheet instead of 
a QR code. For more information on requirements for the reference images 
refer to Apple’s official documentation.


6

https://developer.apple.com/documentation/arkit/content_anchors/detecting_images_in_an_ar_experience?language=objc


3.2 Predefined Locations 

The user can select their position from a predefined list. In the provided 
demo level, this list contains of 5 most popular positions for the chosen 
target area. Buttons are embedded into a scroll box, so it’s possible to add 
as many predefined positions as you want. Also, the user can select their 
position using manual input. In this scenario, the user position will be set to 
a vertex with an ID that they have entered (the user will be virtually 
teleported). To make this process easy and convenient for the user, set 

vertices’ IDs to some friendly name (for example "Canteen" and "Assembly 
Hall”).


7



3.3 Start 

After the initial position is set, the app starts the AR session and prompts 
the user with a small message regarding how to use the app. Now the app 
and its minimap will react to user movement seamlessly using visual-
inertial odometry provided by ARKit and ARCore runtimes. 




8



3.4 Selecting a Destination 

The user can choose a destination point from a predefined menu or enter it 
manually. The app searches for a vertex with the given ID and marks it as a 
destination point.





9



3.5 Pathfinding 

The navigation path from the user current location to the destination point 
will be calculated in real-time (using regular or fast algorithm) and displayed 
as a spline with animated arrows. Also, the app will display and update 
remained distance in real-time.




10



3.6 Minimap 

During the whole period of navigation, the app will show user location and 
rotation relative to true north on the dynamic 3D minimap.





11



3.7 Markers 

The user can tap on any detected surface to place a custom marker. The 
marker will snap to the surface, and will show its given name and distance 
to the user.




12



4. Setting up 

1. Place an ARWorldBase instance anywhere on the map, it will serve as 
an origin for the target area.


2. In ARWorldBase properties enter rotation of the target area relative to 
the world true north.


3. Place one or multiple instances of MapSegment, they will serve as 
containers that represent the properties of each segment. Multiple 
segments are used to divide the map by floors or by some small sub-
areas. Attach each MapSegment to the ARWorldBase.


4. For each MapSegment assign its floor map (used only for debugging 
purposes, will be hidden in the app) and a static mesh (3D model of 
your building) that represents the segment's map in the real world.


5. Adjust the scale, position, rotation and height of the segment to match 
its real-world values (it's very important!). The scale and position of 
each segment must match its real-world scale and position with the 
smallest possible error. Even very small mismatches in scale will lead to 
a big cascading increase in the error level.


6. Build a navigation graph by placing Vertex instances on your map 
segments and connecting them using BilateralConnections or 
LateralConnections arrays.


7. Give an ID to every Vertex that represents a destination point (user will 
be able to perform a search using this ID). Vertices that are used only 
to connect other vertices should have their ID field empty. If a vertex is 
non-unique (there are multiple vertices on the map with the same ID) 
set its “IsUnique” property to false. 


13



8. Attach all placed vertices to the map segment they belong to.


9. [Optional] Place a FloatingIcon instance where there is a possible point 
of interest. Enter its name and a material containing its icon. Attach all 
placed FloatingIcon instances to the map segment they belong to.


10. [Optional] Place all Room instances that represent each room. Set their 
size or leave it zero for automatic size detection. Rooms are not 
required and are not used by default. The main reason why you can 
use them is to get user location in real-time by using the room as a 
trigger. Attach all placed Room instances to the map segment they 
belong to. 


11. Place Configuration, 2DImageProvider and NavigationSpline classes 
anywhere on the map. 


12. In the Configuration class properties fill the InitialPositionPage and 
MainUIText arrays with your possible user's initial positions and 
available destinations for the main UI. Select the appropriate 
pathfinding algorithm in the “Path Building Type” property. 


13. Replace the default QR code texture that comes with the project with 
your own. Put a Vertex instance where your QR code is located in the 
real world and set its ID to “QRCode". 


14



5. World mapping API 

ARWorldBase 

The supplementary class that is used as a root to all MapSegment classes 
and also stores references to them. Every new MapSegment should be 
attached to the ARWorldBase class.


Usage: Place it anywhere on the map.


Public properties


- WorldTrueNorthAngel: Float - Stores rotation shift of the target area 
relative to the true north. You can get the rotation shift of your target area 
using Google Maps and calculating the angle of rotation relative to a 
latitude(any vertical line). The ARWorldBase class will rotate to the given 
angle with a short delay when the application starts. The delay is needed 
to allow the attached MapSegments and their Rooms to calculate their 
sizes and positions using the provided model of the target area (Static 
Mesh). The default value is zero.


- MapSegments: Array of MapSegment - Supplementary array that 
contains references to its segments in case you need it.


MapSegment 

The class that is used to define segments of the target area. All 
FloatingIcon, Room, and Vertex instances that are located in this segment 
should be attached to it.


Usage: Place it anywhere on the map and attach it to the ARWorldBase 
class.


15



Public properties


- Floor: Integer - Stores floor number of the segment. The default value is 
zero.


- FloorDisplayedText: Text(Localized String) - Stores a localizable text that 
describes the segment's floor. Keep in mind that segments can be used 
not only to differentiate floors but also to divide a complex map into more 
small pieces in case the target area is big enough. The default value is 
empty.


- SegmentMesh: StaticMesh - Fundamental mesh (3D model) that defines 
the area of the segment. The default value is null.


- SegmentOffset: Vector2D - Stores the X,Y offset of the segment's mesh 
relative to the segment's origin. The default value is (0.0, 0.0).


- SegmentHeight: Float - Stores the height of the segment's mesh in 
meters. For this to work, the segment's mesh should be 1 meter in 
height. Alternatively, you can create a mesh with any height and set 
SegmentHeight to 1.0. The SegmentHeight will also be used to 
determine if the user is inside the segment to show or hide it from the 
minimap. The default value is 1.0.


- SegmentScale: Float - Stores all axes scale multiplier of the segment’s 
mesh. The default value is 1.0.


- SegmentMapMaterial: Material - A supplementary material that is used to 
show the floor plan. This is only needed to simplify the vertex and room 
arrangement on the segment. The material is only shown in the editor 
and is hidden in the app. The default value is null.


16



- SegmentMapScale: Float - Stores the X,Y scale of the 
SegmentMapMaterial. Use this to adjust the floor plan to match its real-
world scale. The default value is 200.0.


Vertex 

The fundamental class that represents a single vertex used for building 
navigation paths in the target area.


Usage: Place it anywhere on the MapSegment and attach it to this 
segment.


Public properties


- BilateralConnections: Array of Vertex - An array of Vertex instances 
connected to this vertex bilaterally (Stair, Corridor, etc). The navigation 
path will be drawn in both directions.


- LateralConnections: Array of Vertex - An array of Vertex instances 
connected to this vertex laterally (Turnstile, Escalator, etc). The 
navigation path will be drawn only in one direction.


- ID: String - A unique identifier for this Vertex used for search algorithms. 
The default value is empty.


- IsUnique: Bool - Indicates if the vertex has unique ID on the entire map. 
The default value is true.


17



FloatingIcon 

The class represents a floating icon that can be used to highlight points of 
interest.


Usage: Place it anywhere on the MapSegment and attach it to the 
segment.


Public properties


- IconMaterial: Material - A material that contains the image for the floating 
icon. It can include a static picture (like in the demo) or anything else. 
The default value is null.


- Text: Text(Localized String) - A localizable text that describes this point of 
interest. Will be displayed on both sides of the floating icon.


Room 

The class that represents a single room in the target area. It can be literally 
a room or just a small sub-area.


Usage: Place it anywhere on the map segment and attach it to the 
segment.


Public properties


- Size: Vector2D - Stores size of the room. Adjustable in design-time. If set 
to zero the room will set its size automatically depending on its 
surroundings. The default value is zero.


- Height: Float - Defines the height of the room. The default value is 3.0.


18



- Title: Text(Localized String) - Stores a localizable text that describes the 
room. The default value is "No Title”.


- Floor: Text(Localized String) - Stores a localizable text that describes the 
floor of the room. The default value is "First Floor”.


- DebugMaterial: Material - Stores a material that will be applied to the 
room's mesh. For debugging purposes only, it will be hidden in app. The 
default value is null.


- Type: Enum - Stores a type of the room. Can be "Room", "Corridor", 
"Staircase" or "Other". The default value is “Room".


Configuration 

The supplementary class that stores system configuration for this map.


Usage: Place it anywhere on the map. Use only one instance.


Public properties


- Path Building Type: Enum - Contains the type of the pathfinding 
algorithm that should be used to find the optimal path between a starting 
vertex and a target vertex. The algorithm types are described in section 
1.2. The default value is Regular.


- InitialPositionPage: Struct - Contains a struct "Initial Positions" that 
stores a list of user's possible initial positions. Each InitialPosition stores 
a "Text"(Localizable friendly name that will be displayed in the list) and 
"TeleportToVertexTag" (Vertex ID which coordinates will be used to 
virtually teleport the user to that vertex). The default values are missing 
and are implemented directly in the demo level.


19



- MainUIText: Struct - Contains a struct "QuickButtons" that stores a list of 
user's possible destinations which can be selected by the user from the 
main UI. Each QuickButton contains Text"(Localizable friendly name that 
will be displayed in the list), "Floor" (Localizable friendly name of the floor 
that will be displayed in the main UI under the destination) and 
"DestinationTag" (destination Vertex ID).


6. Supplementary API 

2DImageProvider 

The class is responsible for rendering the 2D minimap image.


Usage: Place it anywhere on the map. Use only one instance. Do not edit 
or modify it somehow.


NavigationPathSpline 

The class which is responsible for building a navigation path from the user 
location to the destination point using arrows provided by the Arrow class.


Usage: Place it anywhere on the map. Use only one instance. Do not edit 
or modify it somehow.


Public properties


- Spacing: Float – Distance between arrows on the navigation path.


20



Marker 

The class which represents a single custom marker.


Usage: Not intended for direct usage. Will be instantiated automatically by 
the character controller.


Arrow 

The class which represents a single arrow used in NavigationPathSpline .


Usage: Not intended for direct usage. Will be instantiated automatically by 
the NavigationPathSpline class.


6.1 Structs 

CustomMarker

The struct is storing name and location data about one single custom 
marker placed on the map.


InitialPosition

The struct is storing displayed text and a vertex ID for one single 
predefined initial position.


InitialPositionPage

The struct is storing an array of InitialPosition structs.


QuickDestinationButton

The struct is storing displayed name, displayed floor and a vertex ID for 
one single predefined destination.


21



MainUIButtons

The struct is storing an array of QuickDestinationButton structs.


6.2 Data Assets 

QR Codes


InitialPositionQRCode

Contains ARCandidateImage(reference image) data, such as: texture, 
friendly name, width, height and orientation.


AR Sessions


ARSessionInitial

Contains AR session configuration used for initial positioning. World 
alignment is Gravity and Heading, plane detection is disabled, one 
reference image (QR code) is set, everything else is at its default values.


ARSessionMain

Contains AR session configuration used for runtime positioning. World 
alignment is Gravity and Heading, plane detection is enabled for horizontal 
and vertical planes, no reference images are set, everything else is at its 
default values.


22



7. Demo 

AR Navigation comes with a demo level that represents one floor with an 
area of 80mx60m. It contains one map segment that represents one floor, a 
graph built using multiple vertices, several points of interest icons, and all 
rooms set up. 




The demo was tested on multiple iOS devices by multiple users, the 
feedback showed a high level of interest in the product and its potential. 


23



8. Debug 

To toggle debug mode tap on the "Debug" button located in the top left 
corner. The debug mode will display all vertices and their axes. This will 
allow to test how the virtual world matches the real one.

24


	1. Introduction
	2. Requirements
	3. How it works
	4. Setting up
	5. World mapping API
	6. Supplementary API
	7. Demo
	8. Debug

